Powered By Blogger

miércoles, 6 de octubre de 2010

INTRODUCCIÓN Álgebra, rama de las matemáticas en la que se usan letras para representar relaciones aritméticas. Al igual que en la aritmética, las operaciones fundamentales del álgebra son adición, sustracción, multiplicación, división y cálculo de raíces. La aritmética, sin embargo, no es capaz de generalizar las relaciones matemáticas, como el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado que tiene como lado la hipotenusa es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos. La aritmética sólo da casos particulares de esta relación (por ejemplo, 3, 4 y 5, ya que 32 + 42 = 52). El álgebra, por el contrario, puede dar una generalización que cumple las condiciones del teorema: a2 + b2 = c2.




El álgebra clásica, que se ocupa de resolver ecuaciones, utiliza símbolos en vez de números específicos y operaciones aritméticas para determinar cómo usar dichos símbolos. El álgebra moderna ha evolucionado desde el álgebra clásica al poner más atención en las estructuras matemáticas. Los matemáticos consideran al álgebra moderna como un conjunto de objetos con reglas que los conectan o relacionan. Así, en su forma más general, se dice que el álgebra es el idioma de las matemáticas.

2. HISTORIA

La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bx = c), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los antiguos babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan.




Los matemáticos alejandrinos Herón y Diofante continuaron con la tradición de Egipto y Babilonia, aunque el libro Las aritméticas de Diofante es de bastante más nivel y presenta muchas soluciones sorprendentes para ecuaciones indeterminadas difíciles. Esta antigua sabiduría sobre resolución de ecuaciones encontró, a su vez, acogida en el mundo islámico, en donde se la llamó “ciencia de reducción y equilibrio”. (La palabra árabe al- abr que significa `reducción', es el origen de la palabra álgebra). En el siglo IX, el matemático al-Jwarizmi escribió uno de los primeros libros árabes de álgebra, una presentación sistemática de la teoría fundamental de ecuaciones, con ejemplos y demostraciones incluidas. A finales del siglo IX, el matemático egipcio Abu Kamil enunció y demostró las leyes fundamentales e identidades del álgebra, y resolvió problemas tan complicados como encontrar las x, y, z que cumplen x + y + z = 10, x2 + y2 = z2, y xz = y2.




En las civilizaciones antiguas se escribían las expresiones algebraicas utilizando abreviaturas sólo ocasionalmente; sin embargo, en la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar los símbolos modernos. Esta álgebra incluía multiplicar, dividir y extraer raíces cuadradas de polinomios, así como el conocimiento del teorema del binomio. El matemático, poeta y astrónomo persa Omar Khayyam mostró cómo expresar las raíces de ecuaciones cúbicas utilizando los segmentos obtenidos por intersección de secciones cónicas, aunque no fue capaz de encontrar una fórmula para las raíces. La traducción al latín del Álgebra de al-Jwarizmi fue publicada en el siglo XII. A principios del siglo XIII, el matemático italiano Leonardo Fibonacci consiguió encontrar una aproximación cercana a la solución de la ecuación cúbica x3 + 2x2 + cx = d. Fibonacci había viajado a países árabes, por lo que con seguridad utilizó el método arábigo de aproximaciones sucesivas.

A principios del siglo XVI los matemáticos italianos Scipione del Ferro, Tartaglia y Gerolamo Cardano resolvieron la ecuación cúbica general en función de las constantes que aparecen en la ecuación. Ludovico Ferrari, alumno de Cardano, pronto encontró la solución exacta para la ecuación de cuarto grado y, como consecuencia, ciertos matemáticos de los siglos posteriores intentaron encontrar la fórmula de las raíces de las ecuaciones de quinto grado y superior. Sin embargo, a principios del siglo XIX el matemático noruego Niels Abel y el francés Évariste Galois demostraron la inexistencia de dicha fórmula.

Un avance importante en el álgebra fue la introducción, en el siglo XVI, de símbolos para las incógnitas y para las operaciones y potencias algebraicas. Debido a este avance, el Libro III de la Geometría (1637), escrito por el matemático y filósofo francés René Descartes se parece bastante a un texto moderno de álgebra. Sin embargo, la contribución más importante de Descartes a las matemáticas fue el descubrimiento de la geometría analítica, que reduce la resolución de problemas geométricos a la resolución de problemas algebraicos. Su libro de geometría contiene también los fundamentos de un curso de teoría de ecuaciones, incluyendo lo que el propio Descartes llamó la regla de los signos para contar el número de raíces verdaderas (positivas) y falsas (negativas) de una ecuación. Durante el siglo XVIII se continuó trabajando en la teoría de ecuaciones y en 1799 el matemático alemán Carl Friedrich Gauss publicó la demostración de que toda ecuación polinómica tiene al menos una raíz en el plano complejo (véase Número (matemáticas): Números complejos).




En el presente trabajo, se detallarán las características de las diferentes funciones matemáticasy sus aplicaciones sobre las distintas ciencias y la vida cotidiana.

Las funciones a las que nos dedicaremos son las siguientes:

Función Trigonométrica

Función Cuadrática

Función Afín (Lineal)

Función Logarítmica

Función Exponencial

Función Polinómica

El principal objetivo de esta monografía es poder entender el uso de las funciones y así poder utilizarlas frente a los problemasdiarios. El método de investigación es la consulta bibliográfica y el análisis de la misma.

2. Funciones

Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes para designar una potenciaxn de la variable x. En 1694 el matemático alemán Gottfried Wilhelm Leibniz utilizó el término para referirse a varios aspectos de una curva, como su pendiente. Hasta recientemente, su uso más generalizado ha sido el definido en 1829 por el matemático alemán, J.P.G. Lejeune-Dirichlet (1805-1859), quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello. Dos variables X y Y están asociadas de tal forma que al asignar un valora X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X. La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes. Los valores permitidos de X constituyen el dominio de definición de la función y los valores que toma Y constituye su recorrido".

Una función f de A en B es una relación que le hace corresponder a cada elemento x E A uno y solo un elemento y E B, llamado imagen de x por f, que se escribe y=f (x). En símbolos, f: A à B

Es decir que para que una relación de un conjunto A en otro B sea función, debe cumplir dos condiciones, a saber:

Todo elemento del conjunto de partida A debe tener imagen.

La imagen de cada elemento x E A debe ser única. Es decir, ningún elemento del dominio puede tener más de una imagen.

El conjunto formado por todos los elementos de B que son imagen de algún elemento del dominio se denomina conjunto imagen o recorrido de f.

Observaciones:

En una función f: Aà B todo elemento x E A tiene una y solo una imagen y E B.

Un elemento y E B puede:

No ser imagen de ningún elemento x E A

Ser imagen de un elemento x E A

Ser imagen de varios elementos x E A.

La relación inversa f-1 de una función f puede no ser una función.

Formas de expresión de una función

Mediante el uso de tablas:

X       Y

-1      0

½      1

2       1

0      ¼

1      4





Gráficamente: cabe aclarar que llamamos gráfica de una función real de variable real al conjunto de puntos del plano que referidos a un sistema de ejes cartesianos ortogonales tienen coordenadas [x, f (x)] donde x E A

3. Aplicaciones de las funciones reales

Generalmente se hace uso de las funciones reales, (aún cuando el ser humano no se da cuenta), en el manejo de cifras numéricas en correspondencia con otra, debido a que se está usando subconjuntos de los números reales. Las funciones son de mucho valor y utilidad para resolver problemas de la vida diaria, problemas de finanzas, de economía, de estadística, de ingeniería, de medicina, de química y física, de astronomía, de geología, y de cualquier área social donde haya que relacionar variables.

Cuando se va al mercado o a cualquier centro comercial, siempre se relaciona un conjunto de determinados objetos o productos alimenticios, con el costoen pesos para así saber cuánto podemos comprar; si lo llevamos al plano, podemos escribir esta correspondencia en una ecuación de función "x" como el precio y la cantidad de producto como "y".

Función Afín

Se puede aplicar en muchas situaciones, por ejemplo en economía (uso de la oferta y la demanda) los ecónomos se basan en la linealidad de esta función y las leyesde la oferta y la demanda son dos de las relaciones fundamentales en cualquier análisis económico. Por ejemplo, si un consumidor desea adquirir cualquier producto, este depende del precio en que el artículo esté disponible. Una relación que especifique la cantidad de un artículo determinado que los consumidores estén dispuestos a comprar, a varios niveles de precios, se denomina ley de demanda. La ley más simple es una relación del tipo P= mx + b, donde P es el precio por unidad del artículo y m y b son constantes.

martes, 5 de octubre de 2010

Fotos

   

AlgEbRa

INTRODUCCIÓN  Álgebra, rama de las matemáticas en la que se usan letras para representar relaciones aritméticas. Al igual que en la aritmética, las operaciones fundamentales del álgebra son adición, sustracción, multiplicación, división y cálculo de raíces. La aritmética, sin embargo, no es capaz de generalizar las relaciones matemáticas, como el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado que tiene como lado la hipotenusa es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos. La aritmética sólo da casos particulares de esta relación (por ejemplo, 3, 4 y 5, ya que 32 + 42 = 52). El álgebra, por el contrario, puede dar una generalización que cumple las condiciones del teorema: a2 + b2 = c2.

El álgebra clásica, que se ocupa de resolver ecuaciones, utiliza símbolos en vez de números específicos y operaciones aritméticas para determinar cómo usar dichos símbolos. El álgebra moderna ha evolucionado desde el álgebra clásica al poner más atención en las estructuras matemáticas. Los matemáticos consideran al álgebra moderna como un conjunto de objetos con reglas que los conectan o relacionan. Así, en su forma más general, se dice que el álgebra es el idioma de las matemáticas.
2. HISTORIA
La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bxc), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los antiguos babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan.

Los matemáticos alejandrinos Herón y Diofante continuaron con la tradición de Egipto y Babilonia, aunque el libro Las aritméticas de Diofante es de bastante más nivel y presenta muchas soluciones sorprendentes para ecuaciones indeterminadas difíciles. Esta antigua sabiduría sobre resolución de ecuaciones encontró, a su vez, acogida en el mundo islámico, en donde se la llamó “ciencia de reducción y equilibrio”. (La palabra árabe al- abr que significa `reducción', es el origen de la palabra álgebra). En el siglo IX, el matemático al-Jwarizmi escribió uno de los primeros libros árabes de álgebra, una presentación sistemática de la teoría fundamental de ecuaciones, con ejemplos y demostraciones incluidas. A finales del siglo IX, el matemático egipcio Abu Kamil enunció y demostró las leyes fundamentales e identidades del álgebra, y resolvió problemas tan complicados como encontrar las x, y, z que cumplen x + y + z = 10, x2 + y2 = z2, y xz = y2.

En las civilizaciones antiguas se escribían las expresiones algebraicas utilizando abreviaturas sólo ocasionalmente; sin embargo, en la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar los símbolos modernos. Esta álgebra incluía multiplicar, dividir y extraer raíces cuadradas de polinomios, así como el conocimiento del teorema del binomio. El matemático, poeta y astrónomo persa Omar Khayyam mostró cómo expresar las raíces de ecuaciones cúbicas utilizando los segmentos obtenidos por intersección de secciones cónicas, aunque no fue capaz de encontrar una fórmula para las raíces. La traducción al latín del Álgebra de al-Jwarizmi fue publicada en el siglo XII. A principios del siglo XIII, el matemático italiano Leonardo Fibonacci consiguió encontrar una aproximación cercana a la solución de la ecuación cúbica x3 + 2x2 + cx = d. Fibonacci había viajado a países árabes, por lo que con seguridad utilizó el método arábigo de aproximaciones sucesivas.
A principios del siglo XVI los matemáticos italianos Scipione del Ferro, Tartaglia y Gerolamo Cardano resolvieron la ecuación cúbica general en función de las constantes que aparecen en la ecuación. Ludovico Ferrari, alumno de Cardano, pronto encontró la solución exacta para la ecuación de cuarto grado y, como consecuencia, ciertos matemáticos de los siglos posteriores intentaron encontrar la fórmula de las raíces de las ecuaciones de quinto grado y superior. Sin embargo, a principios del siglo XIX el matemático noruego Niels Abel y el francés Évariste Galois demostraron la inexistencia de dicha fórmula.
Un avance importante en el álgebra fue la introducción, en el siglo XVI, de símbolos para las incógnitas y para las operaciones y potencias algebraicas. Debido a este avance, el Libro III de la Geometría (1637), escrito por el matemático y filósofo francés René Descartes se parece bastante a un texto moderno de álgebra. Sin embargo, la contribución más importante de Descartes a las matemáticas fue el descubrimiento de la geometría analítica, que reduce la resolución de problemas geométricos a la resolución de problemas algebraicos. Su libro de geometría contiene también los fundamentos de un curso de teoría de ecuaciones, incluyendo lo que el propio Descartes llamó la regla de los signos para contar el número de raíces verdaderas (positivas) y falsas (negativas) de una ecuación. Durante el siglo XVIII se continuó trabajando en la teoría de ecuaciones y en 1799 el matemático alemán Carl Friedrich Gauss publicó la demostración de que toda ecuación polinómica tiene al menos una raíz en el plano complejo (véase Número (matemáticas): Números complejos).

FuNcIoNeS

En el presente trabajo, se detallarán las características de las diferentes funciones matemáticasy sus aplicaciones sobre las distintas ciencias y la vida cotidiana.
Las funciones a las que nos dedicaremos son las siguientes:
Función Trigonométrica
Función Cuadrática
Función Afín (Lineal)
Función Logarítmica
Función Exponencial
Función Polinómica
El principal objetivo de esta monografía es poder entender el uso de las funciones y así poder utilizarlas frente a los problemasdiarios. El método de investigación es la consulta bibliográfica y el análisis de la misma.
Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera vez en 1637 por el matemático francés René Descartes para designar una potenciaxn de la variable x. En 1694 el matemático alemán Gottfried Wilhelm Leibniz utilizó el término para referirse a varios aspectos de una curva, como su pendiente. Hasta recientemente, su uso más generalizado ha sido el definido en 1829 por el matemático alemán, J.P.G. Lejeune-Dirichlet (1805-1859), quien escribió: "Una variable es un símbolo que representa un número dentro de un conjunto de ello.  Dos variables X y Y están asociadas de tal forma que al asignar un valora X entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a Y, se dice que Y es una función (unívoca) de X.  La variable X, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable Y, cuyos valores dependen de la X, se llama variables dependientes.  Los valores permitidos de X constituyen el dominio de definición de la función y los valores  que toma Y constituye su recorrido".
Una función f de A en B es una relación que le hace corresponder a cada elemento x E A uno y solo un elemento y E B, llamado imagen de x por f, que se escribe y=f (x). En símbolos, f: A à B
Es decir que para que una relación de un conjunto A en otro B sea función, debe cumplir dos condiciones, a saber:
Todo elemento del conjunto de partida A debe tener imagen.
La imagen de cada elemento x E A debe ser única. Es decir, ningún elemento del dominio puede tener más de una imagen.
El conjunto formado por todos los elementos de B que son imagen de algún elemento del dominio se denomina conjunto imagen o recorrido de f.
Observaciones:
En una función f: Aà B todo elemento x E A tiene una y solo una imagen y E B.
Un elemento y E B puede:
No ser imagen de ningún elemento x E A
Ser imagen de un elemento x E A
Ser imagen de varios elementos x E A.
La relación inversa f-1 de una función f puede no ser una función.
Formas de expresión de una función


Gráficamente: cabe aclarar que llamamos gráfica de una función real de variable real al conjunto de puntos del plano que referidos a un sistema de ejes cartesianos ortogonales tienen coordenadas [x, f (x)] donde x E A
Generalmente  se hace uso de las funciones reales, (aún cuando el ser humano no se  da cuenta), en el manejo de cifras numéricas en correspondencia con otra, debido a que se está usando subconjuntos de los números reales.  Las funciones son de mucho valor y utilidad para resolver problemas de la vida diaria, problemas de finanzas, de economía, de estadística, de ingeniería, de medicina, de química y física, de astronomía, de geología, y de cualquier área social donde haya que relacionar variables.
Cuando se va al mercado o a cualquier centro comercial, siempre se relaciona  un conjunto de determinados objetos o productos alimenticios, con el costoen pesos para así saber cuánto podemos comprar; si lo llevamos al plano, podemos escribir esta correspondencia en una ecuación de función "x" como el precio y la cantidad de producto como "y".
Función Afín
Se puede aplicar en muchas situaciones, por ejemplo en economía  (uso de la oferta y la demanda)  los ecónomos se basan en la linealidad de esta función y  las leyesde la oferta y la demanda son dos de las relaciones fundamentales en cualquier análisis económico. Por  ejemplo,  si un consumidor desea adquirir  cualquier producto, este  depende del precio en que el artículo esté disponible.  Una relación que especifique la cantidad de un artículo determinado que los consumidores estén dispuestos a comprar, a varios niveles de precios, se denomina ley de demanda.  La ley más simple es una relación del tipo P= mx + b, donde P es el precio por unidad del artículo y m y b son constantes.